Standard Model of

FUNDAMENTAL PARTICLES AND INTERACTIONS

The Standard Model is a quantum theory that summarizes our current knowledge of the physics of fundamental particles and fundamental interactions (interactions are manifested by forces and by decay rates of unstable particles)

Structure within the Atom

Quark Size < 10-19 m

Nucleus

Size = 10-14 m

matter constituents FERMIONS spin = 1/2, 3/2, 5/2,

Leptons spin =1/2			
Flavor	Mass GeV/c ²	Electric charge	
ν lightest neutrino*	(0-0.13)×10 ⁻⁹	0	
e electron	0.000511	-1	
V _M middle neutrino*	(0.009-0.13)×10 ⁻⁹	0	
μ muon	0.106	-1	
V _H heaviest neutrino*	(0.04-0.14)×10 ⁻⁹	0	
τ tau	1.777	-1	

Quarks spin =1/2				
Flavor	Approx. Mass GeV/c ²	Electric charge		
u p up	0.002	2/3		
d down	0.005	-1/3		
C charm	1.3	2/3		
S strange	0.1	-1/3		
top top	173	2/3		
b bottom	4.2	-1/3		

Spin is the intrinsic angular momentum of particles. Spin is given in units of h, which is the quantum unit of angular momentum where $h = h/2\pi = 6.58 \times 10^{-25}$ GeV s = 1.05×10⁻³⁴ J s.

Electric charges are given in units of the proton's charge. In SI units the electric charge of the proton is 1 60×10⁻¹⁹ coulombs.

The energy unit of particle physics is the electronvolt (eV), the energy gained by one electron in crossing a potential difference of one volt. Masses are given in GeV/c^2 (remember E = mc^2) where 1 $GeV = 10^9 eV = 1.60 \times 10^{-10}$ joule. The mass of the proton is $0.938 \text{ GeV/c}^2 = 1.67 \times 10^{-27} \text{ kg}$.

Neutrinos

Neutrinos are produced in the sun, supernovae, reactors, accelerator collisions, and many other processes. Any produced neutrino can be described as one of three neutrino flavor states $\nu_{e}, \nu_{\mu},$ or $\nu_{\tau},$ labelled by the type of charged lepton associated with its production. Each is a defined quantum mixture of the three definite mass neutrinos VL, VM, and VH for which currently allowed mass ranges are shown in the table. Further exploration of the properties of neutrinos may yield powerful clues to puzzles about matter and antimatter and the evolution of stars and galaxy structures.

Matter and Antimatter

For every particle type there is a corresponding antiparticle type, denoted by a bar over the particle symbol (unless + or - charge is shown). Particle and antiparticle have identical mass and spin but opposite charges. Some electrically neutral bosons (e.g., Z^0 , γ , and $\eta_c = c\bar{c}$ but not $K^0 = d\bar{s}$) are their own antiparticles.

Properties of the Interactions

Atom

Size = 10-10 m

The strengths of the interactions (forces) are shown relative to the strength of the electromagnetic force for two u quarks separated by the specified distances.

If the proton and neutrons in this picture were

10 cm across, then the quarks and electrons

would be less than 0.1 mm in size and the

entire atom would be about 10 km across.

Property	Gravitational Interaction	Weak Interaction (Electr	Electromagnetic oweak)	Strong Interaction
Acts on:	Mass – Energy	Flavor	Electric Charge	Color Charge
Particles experiencing:	All	Quarks, Leptons	Electrically Charged	Quarks, Gluons
Particles mediating:	Graviton (not yet observed)	W+ W- Z ⁰	γ	Gluons
Strength at \$\int 10^{-18} m	10-41	0.8	1	25
3×10 ⁻¹⁷ m	10-41	10-4	1	60

BOSONS force carriers spin = 0, 1, 2,

GeV/c ²	charge
0	0
80.39	-1
80.39	+1
91.188	0
	80.39 80.39

Stron	g (color) spi	n =1
Name	Mass GeV/c ²	Electric charge
g	0	0
gluon		زرا

Color Charge

Only quarks and gluons carry "strong charge" (also called "color charge") and can have strong interactions. Each quark carries three types of color charge. These charges have nothing to do with the colors of visible light. Just as electricallycharged particles interact by exchanging photons. in strong interactions, color-charged particles interact by exchanging gluons.

Quarks Confined in Mesons and Baryons

Quarks and gluons cannot be isolated - they are confined in color-neutral particles called hadrons. This confinement (binding) results from multiple exchanges of gluons among the color-charged constituents. As color-charged particles (quarks and gluons) move apart, the energy in the color-force field between them increases. This energy eventually is converted into additional quark-antiquark pairs. The quarks and antiquarks then combine into hadrons; these are the particles seen to emerge.

Two types of hadrons have been observed in nature mesons qq and baryons qqq. Among the many types of baryons observed are the proton (uud), antiproton (uud), neutron (udd), lambda A

(uds), and omega Ω^- (sss). Quark charges add in such a way as to make the proton have charge 1 and the neutron charge 0. Among the many types of mesons are the pion π^+ (ud), kaon K⁻ (sū), B^0 ($d\bar{b}$), and η_C ($c\bar{c}$). Their charges are +1, -1, 0, 0 respectively.

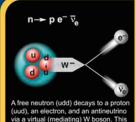
Visit the award-winning web feature The Particle Adventure at

ParticleAdventure.org

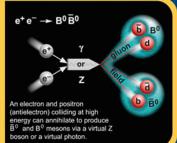
This chart has been made possible by the generous support of:

U.S. Department of Energy

U.S. National Science Foundation


Lawrence Berkeley National Laboratory

©2006 Contemporary Physics Education Project. CPEP is a non-profit organization of teachers, physicists, and educators. For more information see


CPEPweb.org

Particle Processes

These diagrams are an artist's conception. Blue-green shaded areas represent the cloud of gluons

is neutron β (beta) decay.

Why No Antimatter?

Electron

Neutron

and

Proton

Size = 10⁻¹⁵ m

Size < 10⁻¹⁸ m

Matter and antimatter were created in the Big Bang. Why do we now see only matter except for the tiny amounts of antimatter that we make in the lab and observe in cosmic rays?

Dark Matter?

Unsolved Mysteries

Driven by new puzzles in our understanding of the physical world, particle physicists are following paths to new wonders and

startling discoveries. Experiments may even find extra dimensions of space, mini-black holes, and/or evidence of string theory.

Invisible forms of matter make up much of the mass observed in galaxies and clusters of galaxies. Does this dark matter consist of new types of particles that interact very weakly with ordinary matter?

Origin of Mass?

In the Standard Model, for fundamental particles to have masses, there must exist a particle called the Higgs boson. Will it be discovered soon? Is supersymmetry theory correct in predicting more than one type of Higgs?